- Given a binary tree, we would like to print all possible paths from root to leaf nodes.
- We will perform preOrder traversal using depth first search recursive algorithm.
- Let us take a quick example to elaborate the problem statement. (refer Fig 1).
- Binary tree is rooted at node A and having leaf nodes D, E ,F & G.

The root to leaf paths in a binary tree are as follows:
S. No. | Root to leaf path | Value |
---|---|---|
1 | A -> B -> D | 100->50->25 |
2 | A -> B -> E | 100->50->80 |
3 | A -> C -> F | 100->150->125 |
4 | A -> C -> G | 100->150->160 |
Brief algorithm to print root to leaf paths is as follow:
- Traverse the binary tree using preOrder traversal.
- Keep on storing node information in an array (while traversing the binary tree).
- When we reach a leaf node, print the root to leaf path.

Algorithm: print root to leaf paths in java (recursive)
- Start the traversal of tree from Root Node
- Push 100 (Node A) to an array.
- We did not encounter the leaf node
- Start preOrder traversal of Node A’s left subtree.
- Push 50 (Node B) to an array.
- Node B is not a leaf node.
- Traverse left subtree of Node B.
- Push 25 (Node D) to an array & Node D is a leaf node
- Print the array and output will 100, 50, 25 (root to leaf path)
- return from here
- Traverse right subtree of Node B.
- Push 80 (Node E) to an array & Node E is a leaf node
- Print the array and output will 100, 50, 80 (root to leaf path)
- return from here
- Start preOrder traversal of Node A’s right subtree (Node C)
- The logical flow will be same as that of left child flow i.e. Node B
- Traverse left subtree of Node C & output will be 100, 150, 125
- Traverse right subtree of Node C & output will be 100, 150, 160
Code- print all paths from root to leaf nodes in a binary tree
1.) Root2Leaf Class:
- Root2Leaf class is responsible for find all paths from root to leaf nodes.
- Traverse the binary tree using depth first search recursive algorithm.
- We will traverse the binary tree using preOrder traversal.
package org.learn.Question; import java.util.Arrays; import org.learn.PrepareTree.Node; public class Root2Leaf { private static int nPath ; public static void root2LeafPath(Node root, int [] path) { nPath = 0 ; processPath(root, path, 0 ); } private static void processPath(Node root, int [] path, int index) { if ( null == root) { return ; } path[index++] = root.data; if (root.left == null && root.right == null ) { print(path,index); return ; } processPath(root.left,path,index); processPath(root.right,path,index); return ; } private static void print( int [] path, int index) { System.out.printf( "Root to Leaf path %d : " ,++nPath); System.out.println(Arrays.toString(Arrays.copyOf(path,index))); return ; } } |
2.) Node class:
- Node class representing the Nodes of a binary tree
package org.learn.PrepareTree; public class Node { public int data; public Node left; public Node right; public Node( int num) { this .data = num; this .left = null ; this .right = null ; } public Node() { this .left = null ; this .right = null ; } } |
3.) App Class:
- We are creating binary tree in main method.
- We are using Root2Leaf class to print all paths from root to leaf nodes.
package org.learn.Client; import org.learn.Question.Node; import org.learn.Question.Root2Leaf; public class App { public static void main(String[] args) { // root level 0 Node A = Node.createNode( 100 ); // Level 1 Node B = Node.createNode( 50 ); Node C = Node.createNode( 150 ); // Level 2 Node D = Node.createNode( 25 ); Node E = Node.createNode( 80 ); Node F = Node.createNode( 125 ); Node G = Node.createNode( 160 ); // connect Level 0 and 1 A.left = B; A.right = C; // connect level 1 and level 2 B.left = D; B.right = E; C.left = F; C.right = G; int [] path = new int [ 512 ]; Root2Leaf.root2LeafPath(A, path); } } |
Output – root to leaf path in a binary tree (recursive)
Root to Leaf path 1 : 100 50 25 Root to Leaf path 2 : 100 50 80 Root to Leaf path 3 : 100 150 125 Root to Leaf path 4 : 100 150 160 |
Download code – print root to leaf path binary tree recursive algorithm java