- Given a binary tree, find out maximum width of a binary tree using non recursive algorithm.
- Traverse the binary tree using breadth first search (BFS) or level order traversal algorithm.
- What is width of a binary tree?
- The number of nodes at any level gives the width of binary tree (at that level)
- Calculate the width at each level of binary tee.
- The maximum among the widths, calculate at each level, is maximum width of binary tree.
- We have discussed the similar problem Find Level in binary tree having maximum sum.
Example: find width of binary tree bfs algorithm
- Traverse the binary tree using level order traversal.
- Calculate the width at each level.
- Maximum width = max (level 1, ,level 2 …level n)
Let us calculate the width at each level. The table is showing the width at each level.
Level | Width |
---|---|
0 | 1 |
1 | 2 |
2 | 4 |
3 | 2 |
Algorithm – calculate width of binary tree (level order traversal)
We will use breadth first search or level order traversal to iterate through the binary tree.
- Create variable maxWidth=0 for maximum width of binary tree
- Create variable to localWidth=0 for width at each level
- Insert root to queue
- Add null to the queue (level delimiter)
- Iterate through the Queue
- Pop node from queue & check for null
- We are at next level & compare localWidth of current level with maxWidth
- If localWidth is more than maxWidth then update maxWidth
- Reset localWidth to zero
- Add next level children (left and right child)
- Increment width of current level by 1 (localWidth++)
- Pop node from queue & check for null
- Once we exit the loop, we will get the maximum width.
Program – calculate width of binary tree (level order traversal)
1.) MaxWidthOfBTree Class: MaxWidthOfBTree class is used to find the maximum width of a binary tree.
package org.learn.Question; import java.util.LinkedList; import java.util.Queue; import org.learn.PrepareTree.Node; public class MaxWidthOfBTree { public static void maxWidthOfBTree(Node root) { if (root == null) { System.out.println("Tree is empty"); return ; } Queue<Node> queue = new LinkedList<Node>(); queue.offer(root); //level delimiter queue.offer(null); int maxWidth = 0; int level = 0; //default root level int localLevel = 0; int localWidth = 0; while (!queue.isEmpty()) { Node node = queue.poll(); //Level change if (null == node) { if (!queue.isEmpty()) { //level delimiter queue.offer(null); } if(localWidth > maxWidth) { maxWidth = localWidth; level = localLevel; } //Reset the level sum for next level calculation localWidth = 0; localLevel ++; } else { if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } localWidth ++; } } System.out.printf("Max Width %d is at level %d \n",maxWidth,level); return; } }
2.) Node Class: The class representing the nodes of a binary tree.
package org.learn.PrepareTree; public class Node { public int data; public Node left; public Node right; public Node(int num) { this.data = num; this.left = null; this.right = null; } public Node() { this.left = null; this.right = null; } public static Node createNode(int number) { return new Node(number); } }
3.) App Class: We are creating the binary tree in a main method & calling the method of MaxWidthOfBTree class, to find the maximum width in a binary tree.
package org.learn.Client; import org.learn.PrepareTree.Node; import org.learn.Question.MaxWidthOfBTree; public class App { public static void main( String[] args ) { //root level 0 Node A = Node.createNode(100); //Level 1 Node B = Node.createNode(50); Node C = Node.createNode(150); //Level 2 Node D = Node.createNode(25); Node E = Node.createNode(75); Node F = Node.createNode(125); Node G = Node.createNode(175); //Level 3 Node H = Node.createNode(120); Node I = Node.createNode(140); //connect Level 0 and 1 A.left = B; A.right = C; //connect level 1 and level 2 B.left = D; B.right = E; C.left = F; C.right = G; //Connect level 2 and level 3 F.left = H; F.right = I; MaxWidthOfBTree.maxWidthOfBTree(A); } }
Output – width of binary tree using non recursive algorithm
Max Width 4 is at level 2
Download Code – calculate max width of binary tree(BFS)