- Given a binary tree, find out the height of binary using non recursive algorithm.
- Traverse the binary tree using level order traversal or breadth first search algorithm.
- What is height of Binary tree?
- The longest path from root to deepest leaf node, defines the height of a binary tree.
- Root node of a binary tree is assumed to be at Height 1.
- Calculate the height of binary tree wrt. root node.

Example: find height of a binary tree in java using non recursive algorithm.
- Root Node 60 is at Height 1
- Nodes 20, 80 are at Height 2
- Nodes 10,30,70,90 are at Height 3
- Nodes 65,75,85,95 are at Height 4

Longest path from Root to deepest node is at Height 4.
Algorithm: calculate height of binary tree using breadth first search
- Root is at height 1.
- Push root node to queue.
- Add null to the queue
- null will be level delimiter (marker that we have finished the current level)
- Start iterating through the Queue till it is empty
- Pop node from queue
- Check node is null (if yes, we are next level)
- Increment height by 1 & add level delimiter (null)
- Add next level children (left or/and right)
- At end of iteration, we will get the height of tree
Time complexity of algorithm is O(n).
Program: find height of binary tree in java using non recursive algorithm
1.) HeightOfTree Class:
- HeightOfTree class is responsible for finding the height of a binary tree.
- We will traverse the binary tree using level order traversal or non recursive algorithm.
package org.learn.Question; import java.util.LinkedList; import java.util.Queue; public class HeightOfTree { public static int heightOfTree(Node root) { if (root == null ) { System.out.println( "Tree is empty" ); return - 1 ; } Queue<Node> queue = new LinkedList<Node>(); queue.offer(root); // level delimiter queue.offer( null ); int height = 0 ; while (!queue.isEmpty()) { Node node = queue.poll(); if ( null == node) { if (!queue.isEmpty()) { // level delimiter queue.offer( null ); } height++; } else { if (node.left != null ) { queue.offer(node.left); } if (node.right != null ) { queue.offer(node.right); } } } return height; } } |
2.) Node Class:
- Node class is representing the node(s) of a binary tree.
package org.learn.Question; public class Node { public int data; public Node left; public Node right; public Node( int num) { this .data = num; this .left = null ; this .right = null ; } public Node() { this .left = null ; this .right = null ; } public static Node createNode( int number) { return new Node(number); } } |
3.) App Class:
- We are constructing the binary in main method.
- We are calling method of HeightOfTree class to find height of binary tree using BFS or level order traversal algorithm.
package org.learn.Client; import org.learn.Question.HeightOfTree; import org.learn.Question.Node; public class App { public static void main(String[] args) { // root level 0 Node A = Node.createNode( 60 ); // Level 1 Node B = Node.createNode( 20 ); Node C = Node.createNode( 80 ); // Level 2 Node D = Node.createNode( 10 ); Node E = Node.createNode( 30 ); Node F = Node.createNode( 70 ); Node G = Node.createNode( 90 ); // Level 3 Node H = Node.createNode( 65 ); Node I = Node.createNode( 75 ); Node J = Node.createNode( 85 ); Node K = Node.createNode( 95 ); // connect Level 0 and 1 A.left = B; A.right = C; // connect level 1 and level 2 B.left = D; B.right = E; C.left = F; C.right = G; // connect level 2 and level 3 F.left = H; F.right = I; G.left = J; G.right = K; int height = HeightOfTree.heightOfTree( null ); if (height > 0 ) { System.out.println( "Height of a Binary Tree : " + height); } else { System.out.println( "Unable to calculate height of a binary tree" ); } } } |
Output: Height of binary tree using breadth first search algorithm
Height of Binary Tree : 4 |