Find height of binary tree in java using BFS/level order traversal (example)

  • Given a binary tree, find out the height of binary using non recursive algorithm.
  • Traverse the binary tree using level order traversal or breadth first search algorithm.
  • What is height of Binary tree?
    • The longest path from root to deepest leaf node, defines the height of a binary tree.
  • Root node of a binary tree is assumed to be at Height 1.
    • Calculate the height of binary tree wrt. root node.
Height binary tree BFS
Fig 1: Height of binary tree

Example: find height of a binary tree in java using non recursive algorithm.

  • Root Node 60 is at  Height 1
  • Nodes 20, 80 are at Height  2
  • Nodes 10,30,70,90 are at Height 3
  • Nodes 65,75,85,95 are at Height 4
Height each level binary tree
Fig 2: Height at each level

Longest path from Root to deepest node is at Height 4.

Algorithm: calculate height of binary tree using breadth first search

  • Root is at height 1.
    • Push root node to queue.
  • Add null to the queue
    • null will be level delimiter (marker that we have finished the current level)
  • Start iterating through the Queue till it is empty
  • Pop node from queue
  • Check node is null (if yes, we are next level)
    • Increment height by 1 & add level delimiter (null)
  • Add next level children (left or/and right)
  • At end of iteration, we will get the height of tree

Time complexity of algorithm is O(n).

Program: find height of binary tree in java using non recursive algorithm

1.) HeightOfTree Class:

  • HeightOfTree class is responsible for finding the height of a binary tree.
  • We will traverse the binary tree using level order traversal or non recursive algorithm.
package org.learn.Question;

import java.util.LinkedList;
import java.util.Queue;

public class HeightOfTree {
	public static int heightOfTree(Node root) {
		if (root == null) {
			System.out.println("Tree is empty");
			return -1;
		}
		Queue<Node> queue = new LinkedList<Node>();
		queue.offer(root);
		// level delimiter
		queue.offer(null);
		int height = 0;
		while (!queue.isEmpty()) {
			Node node = queue.poll();
			if (null == node) {
				if (!queue.isEmpty()) {
					// level delimiter
					queue.offer(null);
				}
				height++;
			} else {
				if (node.left != null) {
					queue.offer(node.left);
				}
				if (node.right != null) {
					queue.offer(node.right);
				}
			}
		}
		return height;
	}
}

2.) Node Class:

  • Node class is representing the node(s) of  a binary tree.
package org.learn.Question;

public class Node {
	public int data;
	public Node left;
	public Node right;

	public Node(int num) {
		this.data = num;
		this.left = null;
		this.right = null;
	}

	public Node() {
		this.left = null;
		this.right = null;
	}

	public static Node createNode(int number) {
		return new Node(number);
	}
}

3.) App Class:

  •  We are constructing the binary in main method.
  • We are calling method of HeightOfTree class to find height of binary tree using BFS or level order traversal algorithm.
package org.learn.Client;

import org.learn.Question.HeightOfTree;
import org.learn.Question.Node;

public class App {
	public static void main(String[] args) {
		// root level 0
		Node A = Node.createNode(60);
		// Level 1
		Node B = Node.createNode(20);
		Node C = Node.createNode(80);
		// Level 2
		Node D = Node.createNode(10);
		Node E = Node.createNode(30);
		Node F = Node.createNode(70);
		Node G = Node.createNode(90);
		// Level 3
		Node H = Node.createNode(65);
		Node I = Node.createNode(75);
		Node J = Node.createNode(85);
		Node K = Node.createNode(95);

		// connect Level 0 and 1
		A.left = B;
		A.right = C;
		// connect level 1 and level 2
		B.left = D;
		B.right = E;
		C.left = F;
		C.right = G;
		// connect level 2 and level 3
		F.left = H;
		F.right = I;
		G.left = J;
		G.right = K;

		int height = HeightOfTree.heightOfTree(null);
		if (height > 0) {
			System.out.println("Height of a Binary Tree : " + height);
		} else {
			System.out.println("Unable to calculate height of a binary tree");
		}

	}
}

Output: Height of binary tree using breadth first search algorithm

Height of Binary Tree : 4

Download Code – Height Of Binary Tree (Non Recursive)

Scroll to Top